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Abstract Systems out of equilibrium, in stationary as well as in nonstationary regimes,
display a linear response to energy impulses simply expressed as the sum of two specific
temporal correlation functions. There is a natural interpretation of these quantities. The first
term corresponds to the correlation between observable and excess entropy flux yielding
a relation with energy dissipation like in equilibrium. The second term comes with a new
meaning: it is the correlation between the observable and the excess in dynamical activity
or reactivity, playing an important role in dynamical fluctuation theory out-of-equilibrium.
It appears as a generalized escape rate in the occupation statistics. The resulting response
formula holds for all observables and allows direct numerical or experimental evaluation,
for example in the discussion of effective temperatures, as it only involves the statistical
averaging of explicit quantities, e.g. without needing an expression for the nonequilibrium
distribution. The physical interpretation and the mathematical derivation are independent
of many details of the dynamics, but in this first part they are restricted to Markov jump
processes and overdamped diffusions.
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1 Introduction and Main Result

To know a system is to know its reaction to external stimuli. Linear response theory applies
when the effects are comparable to the causes and so far has been systematized only for
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systems in complete thermodynamic equilibrium [5, 26, 44]. The result is summarized in the
fluctuation-dissipation theorem [10, 32] stating that the response of an equilibrium system
to small external perturbations is proportional to its fluctuations: an impulse changing the
potential U → U − hsV at time s, will produce a response R

eq
QV (t, s) = δ〈Q(t)〉/δhs |h=0 in

a quantity Q at time t ≥ s given by

R
eq
QV (t, s) = β

d

ds
〈V (s)Q(t)〉eq. (1)

Here 〈V (s)Q(t)〉eq is the equilibrium time correlation function between V (s) and Q(t) and
β = 1/kBT is the inverse temperature. For example, for an Ising spin system σj = ±1 in
equilibrium with energy function U(σ), where one looks for the response in the magnetiza-
tion Q = ∑

j σj = V to a (time-dependent) magnetic field, one finds the (time-dependent)
susceptibility in terms of the spin-spin correlations in the equilibrium process:

R
eq
QV (t, s) = R(t − s) = β

∑

i,j

d

ds
〈σi(s)σj (t)〉eq, 0 < s < t.

When hs = h is constant over s ∈ [0, τ ], then to first order in h and for t ≥ τ , we get the
thermoremanent magnetization by integrating the previous formula:

∑

i

[〈σi(t)〉h − 〈σi(0)〉eq
] = hβ

∑

i,j

〈[σi(τ ) − σi(0)]σj (t)〉eq. (2)

The equilibrium process 〈·〉eq is time-reversible and can for example be specified here by a
Glauber spin flip dynamics leaving the equilibrium distribution ∼ exp[−βU(σ)] invariant.
The usual proof of (1)–(2) proceeds by applying first-order time-dependent perturbation
theory and by inserting the equilibrium condition. We review it in Appendix C and we
indicate the problem with this approach for extending it to nonequilibrium conditions.

In the present paper we generalize the equilibrium response formula (1) to nonequilib-
rium regimes (stationary as well as nonstationary ones). In this first part we treat Markov
jump processes and overdamped diffusions as simple nonequilibrium models ignoring iner-
tial degrees of freedom. In this context, formula (1) changes to (5) below. A second part [4]
following this paper will give extensions, in particular to underdamped diffusion processes,
which are noisy Hamiltonian systems, and to general space-time local processes that are
defined from their distribution on path-space.

To get a first understanding of the meaning of our generalization it is instructive to view
already (1) not just as the outcome of a perturbative calculation on the level of evolution
operators, but rather in its relation with dissipative effects, cf. [22]. The point is that (1) is
a correlation with the entropy flux associated to the perturbation. To see it, we apply (1)
to write the difference 〈Q(t)〉h − 〈Q(t)〉eq between the perturbed average and the original
value as the time-integral

β

∫ t

0
dshs

d

ds
〈V (s)Q(t)〉eq = β

〈{

htV (t) − h0V (0) −
∫ t

0
ds

d

ds
hsV (s)

}

Q(t)

〉

eq

(3)

and we recognize the correlation of Q(t) with the entropy flux

1

kBT

{

htV (t) − h0V (0) −
∫ t

0
ds

d

ds
hsV (s)

}

. (4)
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Indeed htV (t) − h0V (0) is the extra change of energy in the environment due to the pertur-
bation, and

∫ t

0 dsḣsV (s) is the work done on the system by the perturbation. To be precise,
the entropy flux here is an excess flux of the perturbed process with respect to the unper-
turbed one (∝ U(t) − U(0)). This has an immediate analogue under nonequilibrium condi-
tions when we think of the entropy flux (4) as the excess with respect to whatever steady or
transient entropy production the system might already possess.

However, from dynamical fluctuation theory we have learnt that there is more than
just dissipation or entropy production that governs the fluctuations around nonequilibrium
[37–39]. A novel quantity has appeared, which we call dynamical activity or traffic, a
measure for the system’s nervosity or internal reactivity. This dynamical activity is time-
symmetric, in contrast with the entropy production which leads time’s arrow. It was first
introduced in [34, 41] and studied in the context of nonequilibrium phase transitions [23],
of critical behavior [25], for characterizing the ratchet effect [18], and for large deviation
theory, e.g. in [2, 8, 37]. Close to equilibrium, entropy production and dynamical activity
merge, as can be understood from observing that when approaching equilibrium the cur-
rents loose their direction to become merely elements of (time-symmetric) traffic between
the states of the system. Further away from equilibrium, dynamical activity and entropy
production are really different and play side by side in characterizing the nonequilibrium.
Then, formula (1) splits in two separate terms, one entropic, the other frenetic, to be ex-
plained below. That is made visible in a generalized response formula, written here for the
nonequilibrium situations to be specified below: (1) must be changed into

R
μ

QV (t, s) = β

2

d

ds
〈V (s)Q(t)〉μ − β

2
〈LV (s)Q(t)〉μ . (5)

In (5) we have an arbitrary initial distribution μ for a given nonequilibrium process (over
which we average on the right-hand side). The first term is exactly like in equilibrium (but
with 1/2); the second term is the correlation with the linearized dynamical activity (the
correlation between Q(t) and the function βLV at time s) which is new with respect to
the equilibrium (1). For its interpretation we restrict us here first to jump processes. For the
dynamical activity we must then look at the escape rates, i.e. at the frequencies by which
the Markov jump process leaves a state x. Suppose the process has rates W(x,y) for the
transitions x → y. The escape rate at state x gets changed by the perturbation hsV . Its
excess is

∑

y

W(x, y)
{
e

βhs
2 [V (y)−V (x)] − 1

}
	 βhs

2

∑

y

W(x, y)[V (y) − V (x)] ≡ βhs

2
(LV )(x) (6)

to linear order in h, and L is the backward generator of the jump process:

LV (x) = d

ds

∣
∣
∣
∣
s=0

〈V (s)〉x .

In (5) we have abbreviated LV (s) = LV (xs) for xs the state at time s. More details will come
in the next section, where the precise set-up and meaning will be given. Section 4 gives ex-
amples and makes visible the relative contribution of the two terms in (5). Most importantly
the new formula is presented in Sects. 5 and 6 with its statistical mechanical interpretation.
Section 7 makes the relation with the ambition of effective temperature. Section 8 still con-
nects our work with previous formulations, especially those in [13, 15, 19, 35, 36, 47, 50].
The Appendices give (A) explicit calculations for illustrating the formulæ of Sect. 7, (B) the
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response-formula for discrete time Markov chains, useful for simulation purposes, and (C)
the comparison with formal perturbation theory and with the co-moving frame interpretation
of [13].

2 What Nonequilibrium?

We consider open system first-order dynamics realized in Markov jump and diffusion
processes. These define probabilities on the trajectories ω = (ωt , t ≥ 0) of the system by
specifying the updating mechanism ωt → ωt+dt . The state at each time is denoted by ωt = x

and corresponds to a reduced description of the universe, such as positions or elements of a
discrete set of configurations. Steady equilibrium reservoirs are integrated out and replaced
by effective external forces and noise. The nonequilibrium condition can be imposed by ex-
ternal driving fields or by installing mechanical displacements or chemical gradients at the
boundaries of the system but all external driving is here assumed to be time-independent.
Examples will come in Sect. 4; further details will not matter.

The updating is given in terms of a generator L in the sense that for all single-time
observables f (x) (functions of the configuration x of the system) and for all initial distrib-
utions μ:

d

dt
〈f (ωt )〉μ = 〈(Lf )(ωt )〉μ (7)

which is equivalent to saying that

〈f (ωt )〉μ =
∫

dxμ(x)(etLf )(x) = 〈etLf 〉μ.

In words, etL “pulls a function f (x) back to the time of the initial density μ(x).” L is
therefore often called the backward generator. More in general, for any two observables f

and g, their correlations at times 0 < t < s satisfy

d

ds
〈f (ωs)g(ωt )〉 = 〈(Lf )(ωs)g(ωt )〉 , 0 < t < s (8)

for an arbitrary average at time zero and over all allowed trajectories.
We now specify the two classes of processes we deal with in this first part.

2.1 Jump Processes

We consider a finite space K of states x, y, . . . on which transition rates W(x,y) give the
probability per unit time to jump between the states x → y. No detailed balance is assumed.
We write ρ for a stationary distribution,

∑
y∈K [ρ(x)W(x, y)−ρ(y)W(y, x)] = 0, x ∈ K . In

this case the generator L is the matrix with off-diagonal elements Lxy = W(x,y) and with
diagonal elements equal to minus the escape rates, Lxx = −∑

y W(x, y). Hence

Lf (x) =
∑

y

W(x, y)[f (y) − f (x)]

and by stationarity
∑

x ρ(x)Lf (x) = 0.
We think of the states x as configurations of a mesoscopic system undergoing a Markov

evolution, such as for chemical kinetics or for models of interacting components on a lattice
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which are driven away from equilibrium, cf. Example 4.1; the state x is then the total con-
figuration and the transitions are local; response in discrete time is treated in Appendix B.

At time t = 0 we draw the initial state from an arbitrary probability distribution μ(x),
x ∈ K . For t > 0 we apply the perturbed dynamics with transition rates

Wt(x, y) = W(x,y)e
βht

2 [V (y)−V (x)] (9)

for some potential V with small amplitudes h. We thus switch on another channel of energy
exchange with a reservoir at temperature T . This is a standard type of perturbation in Markov
jump processes by which we add a potential; we will stick to that. More general types of
perturbation are possible, as for example in [19] but for these the specific formula (5) has to
be modified, see [40].

2.2 Overdamped Diffusions

Overdamped diffusions are stochastic processes defined in the Itô-sense by

dxt = {
ν(xt )

[
F(xt ) − ∇U(xt )

] + ∇ · D(xt )
}
dt + √

2D(xt )dBt . (10)

Now x ∈ R
d and the noise is present in the form of the d-dimensional vector dBt having

independent standard Gaussian white noise components. We assume that the environment is
in thermal equilibrium at inverse temperature β > 0 imposing the condition ν(x) = βD(x)

between the bare mobility ν and the diffusion matrix D; they are strictly positive (symmet-
ric) d × d-matrices. The relation ν = βD is easily confused with the fluctuation-dissipation
theorem; they are only equivalent in equilibrium. More in general, ν = βD is an expres-
sion of local detailed balance assuring the proper physical identification of the various terms
in (10). There is a potential U and the force F represents the nonequilibrium driving. We
do not specify here regularity properties or boundary conditions. Equilibrium (1) is obtained
when F = 0, for stationary ρ ∝ exp(−βU). The diffusions (10) are called overdamped be-
cause they have forces proportional to velocities. These processes are high damping limits
(sometimes called Smoluchowski limits) of underdamped or inertial stochastic dynamics
that will be considered in Part II [4]. On the other hand, formal extensions to stochastic
and driven Ginzburg-Landau models (models A-B-C in [9]) do not seem difficult. Examples
come in Sects. 4.2–4.3.

The generator of the dynamics (10) reads

L = ν(F − ∇U) · ∇ + ∇D · ∇. (11)

The time-dependent perturbation changes U in (10) into U − htV for t ≥ 0. In other words
the Hamiltonian part of the dynamics of the system gets an additional conservative force
with a time-dependent amplitude. Here also we assume that ν and D are unchanged under
adding the potential htV .

2.3 Main Question

What to expect at time t > 0 for an observable Q? There will be a shift in its value, deviating
both from the original expectation and from the stationary value:

〈Q(t)〉hμ �= 〈Q(t)〉μ
�= 〈Q(t)〉ρ = 〈Q(0)〉ρ (12)
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Note that we abbreviate Q(t) = Q(xt ). The right-hand sides average over the unperturbed
dynamics, the upper one starting from μ and, on the next line, when starting from the sta-
tionary ρ. Linear response theory for systems out of equilibrium aims at estimating and
interpreting the deviations

〈Q(t)〉hμ − 〈Q(t)〉μ
to first order in h. In this linear regime, one studies the deviations of an observable 〈Q(t)〉h

from its expected value 〈Q(t)〉 in the unperturbed dynamics,

〈Q(t)〉h = 〈Q(t)〉 +
∫ t

0
dshsRQV (t, s) (13)

where

RQV (t, s) ≡ δ〈Q(t)〉h
δhs

∣
∣
∣
h=0

(14)

is the response of a quantity Q(t) to a (small) impulse hs at a previous time s < t .
The initial distribution μ will be remembered via super- and subscripts, where appropri-

ate. A special and interesting case is the stationary response for μ = ρ.

3 Nonequilibrium Response Formula

Under the previous set-up there is a simple general formula for the linear response derived
in [3], the same for all observables Q and V :

R
μ

QV (t, s) = β

2

d

ds
〈V (s)Q(t)〉μ − β

2
〈LV (s)Q(t)〉μ . (15)

The first example of a formula of this kind is (22) in [36], dealing with discrete spin systems.
Since random paths are not smooth, it does not make sense to take the time-derivative inside
the expectation in the first term. On the other hand, for s > t , (8) can be applied and as a
consequence causality is automatically verified in (15): the response vanishes for s > t . One
can thus also rewrite (15) in a more symmetric way which is however only valid for t ≥ s:

R
μ

QV (t, s) = β

2

[
d

ds

〈
V (s)Q(t)

〉
μ

− d

dt

〈
V (t)Q(s)

〉
μ

]

− β

2

〈
LV (s)Q(t) − LV (t)Q(s)

〉
μ
.

(16)
Equations of this form can also be found back in the literature [15, 19, 36]. (See more
in Sect. 8.) Our main goal here is to extend these earlier results and others (such as in
[6, 13]) into the general and usable formula (15), and, most importantly, to accompany it
with an interpretation derived from dynamical fluctuation theory. That will be continued in
[4], showing further robustness of the interpretation.

In the introduction Sect. 1 we have already briefly introduced the statistical meaning of
the two terms on the right-hand side of (5) = (15). More is to come in Sects. 5 and 6. The
first term in (15) (as in (1)) is a correlation with the excess entropy flux. Secondly, there
is the correlation between Q(t) and βLV (s), a quantity that we call frenesy, derived from
the adjective frenetic or frantic. In contrast to the entropy production, which has a preferred
direction in time, frenesy is a time-symmetric quantity.
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Let us also see how formula (15) reconstructs the equilibrium formula (1). In this case
μ = ρ is the equilibrium distribution with the process satisfying time-reversal symmetry,
with s < t

〈LV (s)Q(t)〉eq = 〈LV (t)Q(s)〉eq = d

dt
〈V (t)Q(s)〉eq

= − d

ds
〈V (t)Q(s)〉eq = − d

ds
〈V (s)Q(t)〉eq (17)

which is the first term in (15). Since by (17) in equilibrium the frenesy-correlation exactly
equals minus the correlation with the entropy flux, the two terms on the right-hand side of
(15) add up to give (1).

We end the section with the formal proof of formula (15), which is easy when going
to path-space. We should write the perturbed expectation value in terms of the unperturbed
one. More explicitly we consider paths ω = (ωs) over the time-interval s ∈ [0, t] to write

〈Q(t)〉h =
∫

dPμ(ω)
dP h

μ

dPμ

(ω)Q(ωt )

where the dP ’s stand for path-probability densities in the perturbed (superscript h) and
unperturbed processes. In particular, for the jump processes of Sect. 2.1,

Pμ(ω) = μ(ω0)W(ω0,ωt1)e
−∑

y

∫ t1
0 dsW(ωs ,y) · · ·W(ωtn−1 ,ωtn)e

−∑
y

∫ t
tn

dsW(ωs ,y)

for a path ω = (ω0 → ωt1 → ·· · → ωtn = ωt). As a consequence,

log
dP h

μ

dPμ

(ω) = β

2

n∑

k=1

htk

[
V (ωtk ) − V (ωtk−1)

]

−
∑

y

∫ t

0
dsW(ωs, y)

[
e

βhs
2 [V (y)−V (ωs )] − 1

]
(18)

where the first sum is over all the jump times (t1, . . . , tn) in ω, and we put t0 = 0 and tn+1 = t .
Remember that the path is constant between the jump times so that

∫ t

0
ds

d

ds
hsV (ωs) =

n∑

k=0

V (ωtk )
[
htk+1 − htk

]

= htV (ωt ) − h0V (ω0) +
n∑

k=1

htk

[
V (ωtk−1) − V (ωtk )

]

by partial summation. We can therefore rewrite the first line of (18) and substitute (4). The
rest is expansion to first order in h for a finite number of terms, almost surely under dPμ(ω).
In particular, the frenetic term appears as the first order in the time-symmetric part (second
line of (18)), like in (6).

The strategy is unchanged for overdamped diffusions. There, the paths ω = (xs) are con-
tinuous and the action (18) can be found in the stochastic integral

log
dP h

μ

dPμ

(ω) = β

2

{∫ t

0
dxs∇V (xs)hs

+
∫ t

0
dsν(∇U − F)(xs) · hs∇V (xs) + O(h2)

}

. (19)
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The first Itô-integral can be rewritten in the Stratonovich sense (with the “◦”-notation in the
integral)

∫ t

0
dxs∇V (xs)hs =

∫ t

0
dxs ◦ ∇V (xs)hs +

∫ t

0
dshs∇D · ∇V (xs) (20)

where the last term can be combined with the second line in (19) to make βLV/2, see (11).
Moreover,

〈∫ t

0
dxs ◦ ∇V (xs)hsQ(xt )

〉

μ

=
∫ t

0
dshs

d

ds
〈V (s)Q(t)〉μ.

The rest is again trivial expansion.

4 Examples

It is often more convenient to visualize the integrated version of (15) for a small but constant
perturbation hs = h, s ≥ 0. Then, the generalized susceptibility

χ(t) = 1

h

[〈Q(t)〉h − 〈Q(t)〉] ,

is given by

χ(t)/β = 1

2
[C(t) + K(t)] ≡ CNE(t) (21)

with correlation function (coming from the entropic term in (15))

C(t) = 〈V (t)Q(t)〉 − 〈V (0)Q(t)〉

and a term (coming from the frenetic term in (15), extra with respect to equilibrium)

K(t) = −
∫ t

0
ds〈LV (s)Q(t)〉

representing an integrated correlation function. The average of C and K , denoted by CNE(t)

in (21), thus has to be equal to χ(t)/β in general. If extended to t ↑ ∞, χ(t) gives the change
in nonequilibrium stationary expectation when adding a small potential.

4.1 Driven Kawasaki Dynamics

Consider an exclusion process as a model of ionic transport through a narrow channel. This
is described by a collection of n sites, labeled by i = 1, . . . , n, each holding either one
particle (xi = 1) or none (xi = 0). In the bulk of this system no particles are created or
annihilated, only jumping to neighboring sites is allowed via a Kawasaki dynamics. At the
edges i = 1, n particles can move in or out from reservoirs with density d1 and dn, respec-
tively. The form of the response formula (15) is unchanged by adding a nearest neighbor
interaction with energy U(x) = −∑n

i=1 xixi+1. Moreover, we can add an “electric” field E

promoting particle jumps to the right. Since it is a Markov jump process, there are transition
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rates for particles hopping to neighboring sites and rates for creation and annihilation at the
edges. For example, a particle enters into site i = 1 from the reservoir with rate

W(x,y) = d1ψ(x, y) exp

{

−β

2
[U(y) − U(x)]

}

, ψ(x, y) = ψ(y, x)

where y = x except that x1 = 0 while y1 = 1. The rate of the reverse transition can be found
by imposing local detailed balance. Similarly, in the bulk, when e.g. xi = 1, xi+1 = 0 and y

is reached by inverting these occupations,

W(x,y) = ψ(x, y) exp

{

−β

2
[U(y) − U(x) − E]

}

, ψ(x, y) = ψ(y, x).

Simple nonequilibrium conditions can thus be introduced either by

(i) setting different reservoir densities d1 �= dn, or
(ii) setting a nonzero electric field E > 0 in the bulk.

We choose the total number of particles N (t) = ∑n

i=1 xi as observable. We also introduce
a perturbation V (s) equal to N (s), which means that we are changing the chemical potential
of both reservoirs with a common shift. Transition rates for the perturbed process are thus
multiplied by a factor eβhs/2 if a particle enters the system, and by e−βhs/2 when a particle
leaves; transitions in the bulk are left unchanged.

In this case the frenetic term is with LV = J (s), the systematic current, and represents
the expected change of the potential N per unit time, i.e., it is the rate of change in the
number of particles from the two possible transitions at boundary sites. Thus, for x → y the
transition modifying x1, and for x → z the transition modifying xn, we have

J (x) = [N (y) − N (x)]W(x,y) + [N (z) − N (x)]W(x, z).

We have numerically verified that χ = C = K under equilibrium conditions. While C = K

to excellent precision, the shape of χ depends weakly on h, and is found to converge to C

only for h sufficiently small. In fact, one can pretend exact matching only in the limit h → 0,
but h = 0.01 turns out to be sufficiently small to achieve a good convergence.

A representative example for the nonequilibrium case (i) is shown in Fig. 1(a). One can
see that each of the functions C(t) and K(t) is a poor approximation of the response, while
the agreement between CNE(t) and χ(t)/β is excellent.

In Fig. 1(b) we show an example of nonequilibrium condition (ii). Again, only CNE(t)

matches χ(t)/β . Curiously, a comparison of this example with the previous one reveals that
C can be either larger or smaller than K , even for two nonequilibrium conditions that look
pretty similar, in the sense that they yield a current in the same direction for a relatively
simple system.

4.2 Diffusion on the Circle

Consider the Langevin equation for a particle position xt ∈ S1 on a circle driven by a con-
stant field F(x) = f and subject to a time-dependent forcing:

dxt = ν[f − U ′(xt ) − htV
′(xt )]dt + √

2DdBt . (22)
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Fig. 1 Plot of the quantities involved in (21), for (a) case (i) (E = 0) with L = 10, β = 1, h = −0.01, and
reservoir density unbalance d1 = 0.9, dn = 0.1, and (b) for case (ii) (d1 = dn = 0.5) with L = 10, β = 1,
h = −0.01, E = 3

Here the prime denotes differentiation with respect to space. The term htV
′ is the time-

dependent perturbation while dBt is a standard Gaussian white noise. The diffusion con-
stant D and the mobility ν are related by the Einstein relation ν = βD, with β the inverse
temperature.

This example has been recently experimentally realized as reported in [24], for testing
the co-moving frame interpretation of [13] also explained in Appendix C. In fact, its non-
equilibrium stationary distribution ρ is known analytically, see [38].

Here we show the result of a simple simulation of the overdamped particle studied in the
experiment, with potentials and observable U(x) = Q(x) = V (x) = sin(x), and a constant
force f . The frenesy βLV (x) of a particle at position x can be computed by applying the
generator of the overdamped dynamics

L = (f − U ′)
d

dx
+ 1

β

d2

dx2

to the potential V (x), which gives βLV (x) = β[f − cos(x)] cos(x)− sin(x). We have mea-
sured the correlations C(t) and K(t) as well as responses χ(t) for small h, see (21).

Figure 2(a) shows that for strong stationary nonequilibrium f � 0 there is a large dif-
ference between the integrated correlation function of the frenesy and that of the entropy
production. However, their average CNE(t) agrees very well with the response χ(t), as it
should.

It is important however to recall that our approach works for nonstationary regimes as
well. In Fig. 2(b) we show an example of a particle starting at time t = 0 from a nonsta-
tionary initial distribution μ(x) = δx,0 (i.e. its position is x0 = 0), but for the rest not forced
outside equilibrium, f = 0, to emphasize the transient character of this situation. Again, we
can see that the response is well estimated by CNE(t).

In the second part [4] we will treat the inertial version of this model.
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Fig. 2 Response and fluctuations of the overdamped particle in a tilted periodic potential, as discussed in the
text, with inverse temperature β = 0.2, mobility ν = 1 and perturbation h = −0.02. (a) Steady state regime,
with initial distribution equal to the stationary one, and force f = 0.9. (b) Transient regime, with initial
position x0 = 0 and force f = 0

4.3 Driven Brownian Motion

Consider again the overdamped Langevin equation (10) but with constant ν = βD:

(dxi
t ) = νij [f j (xt ) + hj ]dt + √

2D
ij

dB
j
t

with repeated indices j = 1, . . . d summed over. The f includes all forces and h is the small
constant perturbation. The true mobility M is defined as the response

Mij = lim
t→∞

d

dhj

〈
ẋi

t

〉h
ρ

∣
∣
∣
∣
h=0

(23)

while the real diffusion matrix is given by

Dij = lim
t→∞

1

2t

∫ t

0
ds

∫ t

0
dr

〈
(ẋi

s − 〈ẋi〉ρ)(ẋj
r − 〈ẋj 〉ρ)

〉
ρ
.

As (23) is a response function, we can easily compute it within our framework. After a
straightforward calculation, it follows that

Mij = βDij − βνjk

2
lim
t→∞

1

t

∫ t

0
ds

∫ t

0
dr

〈
f k(xs)(ẋ

i
r − 〈ẋi〉ρ)

〉
ρ
. (24)

Note also that 〈ẋi〉ρ = 〈νijf j (x)〉ρ . Observe that in equilibrium, the second term in (24)
vanishes because the observable ẋt is anti-symmetric, and 〈ẋ〉eq = 0. Then, the equilibrium
fluctuation-dissipation relation holds with M = βD. Its violation for nonequilibrium, i.e.,
that there is a correction (= second term) in (24), is completely compatible with the condi-
tion ν = βD for the reservoir in thermal equilibrium at inverse temperature β .
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5 Dissipation: the Entropic Term

Even at equilibrium, the response to an external perturbation is a nonequilibrium process
involving a transient with production of entropy. In steady nonequilibrium conditions instead
we deal with the excess in this entropy production, as the starting point is already a regime
with nonvanishing flows.

In equilibrium it is known that the response function is closely related to the energy dis-
sipation of the system into the environment. In systems driven out of equilibrium things get
more complicated: even when the system is not perturbed there is already a (time extensive)
heat dissipation. This is the housekeeping heat that is needed to maintain the (unperturbed)
nonequilibrium stationary state. Perturbing the system then gives additional heat. We see
here that the prediction in [46] that the usual equilibrium relation between response and
dissipation is preserved when taking into account only the excess heating and ignoring the
housekeeping heat, is indeed true in the following sense.

During a specific trajectory of the system, the heat dissipation can be split into two parts:
Qhk + Qex [30, 46]. The first term is the housekeeping heat while Qex is the extra heat
generated through the perturbation, and is just the temperature times the excess entropy
production, which we already encountered in our calculations (3)–(4).

Let us assume that the amplitude hs is periodic with period t so that it makes sense to
consider the expectation of the excess heat over the interval [0, t]:

〈Qex〉hρ =
∫ t

0
dshs

d

ds
〈V (s)〉hρ .

We expand the expectation value of V using the definition of the response function RV V :

〈Qex〉hρ =
∫ t

0
dshs

d

ds

[

〈V (s)〉ρ +
∫ s

0
drRV V (s, r)hr

]

.

Here 〈V (s)〉ρ is independent of s because of stationarity and RV V (s, r) = R(s − r) = 0 for
s < r so that

〈Qex〉hρ = −
∫ t

0
ds

d

ds
hs

∫ +∞

−∞
drR(r)hs−r

where the right-hand side is exactly the same expression as in equilibrium for the dissipated
energy over one period. As is standard, see e.g. [26, 44], the last relation can be rewritten in
the frequency domain to obtain now the (excess) heat proportional to the imaginary part of
the Fourier transform of RV V = R. We conclude that also out-of-equilibrium the imaginary
part of the Fourier transform of the generalized susceptibility is related to energy dissipation,
but only of the excess heat. Observe finally that the imaginary part of the Fourier transform
is the Fourier transform of the time-antisymmetric part of RV V and that we have already
written down this time-antisymmetric part: it is the right-hand side of (16), extended to
t ≤ s.

6 Activity: the Frenetic Term

As we have seen, besides the entropy flux there is yet another relevant quantity getting into
the picture. It is a younger concept in nonequilibrium studies as witnessed by the fact that
its name has not been settled yet: it has been called traffic [37–39] or dynamical activity
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[2, 8, 23, 25], to denote a property related with the volume of transitions or changes per-
formed in time. We like to refer to it as frenesy, a name that sounds more similar to entropy
or energy. This quantity is time-symmetric, in the sense that trajectories display the same
activity if they are spanned in the normal temporal direction or backward in time. The rele-
vance of time-symmetric quantities has been anticipated in [34, 41]. Activity denotes thus an
aspect of the dynamics that complements entropy production (which is time anti-symmetric
– flows reverse together with time) in the description of fluctuating quantities in regimes out
of equilibrium.

We recall here how the frenesy/dynamical activity appears in dynamical fluctuation the-
ory, choosing the set-up of Sect. 2.1 (finite state space Markov jump processes xt ).

Consider the stationary process Pρ and measure the fraction of time that the system
spends in each state x ∈ K :

pτ (x) = 1

τ

∫ τ

0
δxt ,xdt, with δa,b = 0 if a �= b and δa,b = 1 if a = b.

That is the empirical distribution of occupation times over [0, τ ] while drawn at time zero
from the stationary ρ. When the stationary process Pρ is an ergodic Markov process, pτ is
invariant under time-reversal and pτ → ρ for τ ↑ +∞. Following the pioneering work in
[20] we look here at the fluctuations around that law of large times, for which it is known
that

Probρ[pτ 	 μ] 	 e−τI (μ), τ ↑ +∞.

See e.g. [17] for a precise description of this fluctuation formula. The exponent is governed
by the functional I (μ) ≥ 0, with equality for I (ρ) = 0. There is a variational expression for
the fluctuation functional I (μ),

I (μ) = sup
V

{

−
∑

x

μ(x)

[
∑

y

W(x, y)e
β
2 [V (y)−V (x)] −

∑

y

W(x, y)

]}

(25)

in terms of the excess escape rates when adding a potential −V much as in (9). The actual
supremum is then reached for the potential V that makes μ stationary; i.e., by changing
W(x,y) → W(x,y) exp{β[V (y) − V (x)]/2}. Thus, for that μ-dependent potential V ,

I (μ) =
∑

x,y

μ(x)W(x, y) −
∑

y

μ(x)W(x, y)eβ[V (y)−V (x)]/2

	 −β

2

∑

x

μ(x)LV (x).

In the second line (expected frenesy in μ) we have assumed that μ is close to the stationary
measure (small fluctuations), and we have written the first term in an expansion around
μ − ρ, where V is supposed to be small as well, again like in (6). In other words, the rate
I (μ) of escape from density μ is given in terms of the expected frenesy under μ.

For further information on the role of activity/frenesy in dynamical fluctuation theory,
we refer to [37–39].

7 To Effective Temperature

While the equilibrium fluctuation–dissipation relation (1) is typically violated for nonequi-
librium regimes, one may wonder whether it can sometimes be restored by the introduction
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of an effective temperature T eff, in the sense

R
μ

QV (t, s) = 1

kBT eff

d

ds
〈V (s)Q(t)〉μ. (26)

Many studies have been devoted to the study of the prefactor, in what sense it perhaps re-
sembles a thermodynamic temperature-like quantity for some classes of observables and
over some scales of times (s/t, s); we refer to [9, 14, 31, 33] for an entry into the extensive
literature. Clearly, whatever the purpose of the discussion, an exact expression of the re-
sponse should help, especially when entirely in terms of explicit correlation functions. The
first calculations in this sense are in [11] and they have been referred to as the “no field-
method” [48]. In particular, for purposes of simulation or numerical verification of (26) we
do no longer need to perform the perturbation by hand. In fact, now we can write the ratio
T/T eff = X entirely in terms of correlation functions

X = XQV (μ; t, s) = 1

2

[

1 − 〈LV (s)Q(t)〉μ
d
ds

〈V (s)Q(t)〉μ

]

(27)

with numerator and denominator in (27) each having a specific physical meaning as in the
previous two sections. An effective temperature is obtained as the ratio between the frenetic
and the entropic term: if for some observables (V ,Q) and over time-scales (t/s, t),

Y
d

ds
〈V (s)Q(t)〉μ = 〈LV (s)Q(t)〉μ

for some Y , then X = (1 − Y )/2. Equilibrium has X = 1 = −Y . In the case where LV ≈ 0
as for a conserved quantity, then Y = 0. The simplest example is Brownian motion L = �

for V the position, cf. Virasoro’s example in [15]. In that last reference, what are called “flat
directions” can be associated to perturbations with zero frenesy LV = 0. In Appendix A we
give some explicit results to illustrate the above ideas and formulæ.

Finally, X and the effective temperature T eff get negative when the frenetic term over-
whelms the entropic contribution, which we can expect whenever the perturbation strongly
activates the dynamics. It is not clear to us whether that relates with the observations in [47]
concerning “activated dynamics,” but certainly, those “active states” with negative effective
temperature, here interpreted as highly frenetic ones are very different from equilibrium
states.

One should understand that (26) represents a rather optimistic scenario. Formula (26)
wants to mimic (1) by replacing just one parameter. Why should there be also out-of-
equilibrium a single parameter and a useful notion of temperature in its usual thermody-
namic understanding, and how would it depend on the observables V and Q? (See [43] for
a very recent discussion.) Answers to these questions have been partially given but are often
restricted within a context of mean field systems or for small fluctuations, effectively dealing
with calculations as in Appendix A, similar to calculations for scalar fields as in [15] and
in [9]. In fact, the optimism in (26) is a sort of conservatism as it wants to attach special ref-
erence to equilibrium forms and chooses to continue working with equilibrium notions such
as the temperature. We take a different attitude: the violation of the equilibrium fluctuation-
dissipation relation (FDR) is an opportunity to discover new connections between response
and dynamical fluctuations away from equilibrium, and to identify these relations in terms
of the relevant newly emerging physical quantities.

Let us then try to see how the notion of effective temperature could be seen as a one-
parameter reduction of a general equilibrium-like FDR that is valid also outside equilibrium
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but with an effective dynamics. The starting point is observing that in the case of equilib-
rium, formula (1) is equivalent with

R
eq
QV (t, s) = −β〈(LV )(s)Q(t)〉eq. (28)

That follows from the calculation (17). In other words, the fluctuation-dissipation theorem in
equilibrium can also be called a fluctuation-frenesy theorem; the two terms on the right-hand
side of (15) are simply the same. Therefore, for purposes of getting closer to equilibrium
response formulæ one really has the choice to mimic either (1) or rather (28). The first leads
to the ambition of effective temperature (26), the latter to the new notion of effective frenesy.
But the latter is also much richer. In fact a simple calculation, that we postpone to the end
of Appendix C, shows that the exact nonequilibrium response formula (15) can indeed be
written in the equilibrium form (28):

R
μ

QV (t, s) = −〈Gμs V (s)Q(t)〉
μ

(29)

with a new effective frenesy

GμV = β

2μ
[L†(μV ) − V L†μ + μLV ]

= βρ

2μ

[

L∗
(

μ

ρ
V

)

− V L∗
(

μ

ρ

)

+ μ

ρ
LV

]

. (30)

Here L† is the forward generator1 and for jump processes L†g(x) = ∑
y[W(y,x)g(y) −

W(x,y)g(x)], and L∗ is the adjoint generator, see (35) in Appendix C. The first line in
(30) does not need to assume a stationary distribution ρ, while it is explicitly and implicitly
(in L∗) present in the second line of (30). At any rate the operator Gμ acting on V in (30) has
the following exact property: it is itself a generator (just like the original L in (7) or (8)) but
of a new dynamics for which μ is an equilibrium distribution (i.e. 〈f (Gμg)〉μ = 〈g(Gμf )〉μ
for all f,g). Thus, in (29) the generator Gμs is the instantaneous equilibrium generator with
respect to the time-evolved distribution μs . This underlies the conclusions of [12].

We compare (29) with (28) and we recognize the equilibrium form with L for the equi-
librium ρ replaced by Gμs for the transient μs . In the stationary nonequilibrium case, we
have μs = ρ and (30) is

Gρ = β

2
(L + L∗) (31)

replacing L in (28). Hence, if the perturbation V is time-direction independent in the precise
sense that LV = L∗V , then the nonequilibrium response ((37) = (15) for μ = ρ) reduces to
the equilibrium formula (1) and X = 1. See [45] for very related conjectures and observa-
tions.

1It is called the forward generator because of the definition of the time-evolved measure μt :

〈f (xt )〉μ =
∫

dxμt (x)f (x).

From this we see that μt = etL†
μ, so that L† pushes the measure μ forward in time.
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8 Some Other Previous Formulations

The literature on (extensions of) the fluctuation-dissipation theorem is vast. We apologize
for not being able to list all possible and even essential contributions. The equilibrium for-
mulation spans all of the previous century, while nonequilibrium versions started to appear
since the 1970’s and very much continue up to now. Early works include [1, 51] and also
[16, 27], where we see a discussion within the theory of stochastic dynamics. In contrast to
[27, 28] our unperturbed process is time-homogeneous. Coming to more recent times, viola-
tions of equilibrium FDR have been most often discussed in transient regimes. For example,
in the context of aging phenomena [14, 31], much thought has been given to making sense
of an effective temperature as briefly discussed in Sect. 7.

However, recently much new work has been also directed to find generic extensions of
FDR in nonequilibrium steady states and to discussions of the dissipative elements in relax-
ations to nonequilibrium. There is for example the line starting from [29, 30, 45, 46] which
treats nonequilibrium heat effects. In particular [29] might also be useful in real experiments
because the FDR violation is there directly connected with the energy dissipation. We do not
know yet how to relate that to the new ideas surrounding the frenetic term in our work or to
the physics of “active states” as also in [47]. The latter follows the line of [22], where the
connection between the so called fluctuation theorem and the fluctuation-dissipation theo-
rem was first explained.

For other recent extensions of the FDR, we refer to [6, 7, 21, 49, 50]. We also mentioned
before (at the end of Sect. 7 and more will come in Appendix C) how our approach is related
to the co-moving frame interpretation of [12, 13, 24]. There, as in the previous references,
one disadvantage is that one keeps the stationary density ρ (or its logarithm) as observable in
the fluctuation formula. In our approach the largely unknown distribution only enters in the
statistical averaging. Being optimistic one could say that the generalized FDR of [21, 42] can
be used to verify hypothesis on the phase space distribution function. Or, one can imagine
approximation schemes for making the numerics possible at all, cf. [50]. In the same sense
the extensions in [6, 13] are also not explicit as they need the information on the adjoint
hydrodynamics or again on the local probability current, but at least they come with a new
and still interesting interpretation (reverse response in [6] and co-moving frame in [12, 13]).

A first generalized fluctuation-dissipation relation giving a response formula in our sense
appears in Sect. 2 of [15]. It treats a Langevin dynamics y(t) for soft spin models and the
resulting equation (2.10) in [15] is exactly our formula (16) for Q = V equal to y. A very
similar treatment is repeated in [36] for systems of Ising spins (i.e., within the class of
Markov jump processes). Some more general treatment again for jump processes is offered
in [19], in particular its (16)–(17). However as before and as mentioned already in the ab-
stract of [19], “the asymmetry. . . is not related to any physical observable.” In contrast, we
have emphasized the interpretation via dynamical activity/frenesy in nonequilibrium fluctu-
ation theory. In fact, that interpretation is exactly what makes a systematic generalization
possible at all, as will become even more clear in [4]. The only study in which we recognize
some of the ideas related to the frenetic term is in [47], in the context of dynamical systems.

9 Conclusions

We have studied linear response relations under general nonequilibrium conditions (station-
ary and not). This first part has dealt with jump processes and with overdamped diffusions,
which is the usual set-up for discussions on the violation of the fluctuation-dissipation the-
orem and for the possible emergence of an effective temperature. Here we have stressed the
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emergence of the dynamical activity, or frenesy in linear order, as complementary to the en-
tropy flux. Out of equilibrium, dissipation and activity detach and the response needs to be
evaluated in terms of both entropic and frenetic correlation functions. As both correlations
are expressed in terms of explicit averages, they constitute a formula ready to use in a general
context. For example, estimates of these correlations can be obtained with usual averaging
in simulations, without any need to know further details or approximations of the stationary
density of states. On the theoretical side, several previous approaches are recovered or have
been extended within the same scheme. In many cases they have been discussed in specific
model dynamics or for specific observables. It is interesting that there is a unifying approach
with statistical interpretation behind this very broad variety of previous results.

Within the models we considered, more general types of perturbation are possible and
interesting. For example, what will happen if the perturbation is not of the potential type but
actually changes the nonequilibrium part or driving of the dynamics? In all these cases our
results must be modified, of course, but we think that the general method and framework
we use is applicable to this wider set of questions. Specifically, the concepts of entropy and
frenesy will remain the major actors in nonequilibrium fluctuation-response theory.

Acknowledgements The authors are grateful to Wojciech De Roeck, Andrea Gambassi, Krzysztof
Gawȩdzki, Dragi Karevski and Karel Netočný for very useful discussions. B.W. receives support from FWO,
Flanders. M.B. benefits from K.U.Leuven grant OT/07/034A.

Appendix A: Explicit Calculations for Linear Diffusions

We give here the results of some explicit calculations to illustrate formula (27) in Sect. 7.
Similar calculations can be found in [9, 15].

Fix parameters α,B ∈ R,D > 0 and look at the linear Langevin dynamics for a global
order parameter M ∈ R,

Ṁ(t) = −αM(t) + htB + √
2Dξ(t)

for standard white noise ξ(t). The ht , t > 0, is a small time-dependent field. The generator
of the unperturbed dynamics (on observables f ) is Lf (M) = −αMf ′(M) + Df ′′(M). We
can think of a Gaussian approximation to a relaxational dynamics of the scalar magneti-
zation M (no conservation laws and no spatial structure) valid in high enough dimensions
(above d = 4 for the standard Ising model). Then, in a way, α = 0 corresponds to the critical
(massless) dynamics and α > 0 is a paramagnetic dynamics (high temperature). By taking
D ↓ 0 we exclude the diffusive aspects and we can think then of gradient relaxation in the
low temperature regime.

The equilibrium (reversible stationary density on R for perturbation B = 0) is

ρ(M) = 1

Z
exp

{

−α
M2

2D

}

with zero mean and variance 〈M2〉 = D/α. (Here, α > 0 is needed but not for the finite-time
existence of the dynamics.)

We now start from an initial fixed M(t = 0) = M0. The response function is obtained
from

〈M(t)〉hM0
= M0e

−αt + B

∫ t

0
dshse

−α(t−s)
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or

δ

δhs

〈M(t)〉hM0
(h = 0) = Be−α(t−s) (32)

which does in fact not depend on M0 (and thus also equals the equilibrium result).
The correlation function for 0 < s < t is

〈M(s)M(t)〉M0 = M2
0 e−α(t+s) + D

α

[
e−α(t−s) − e−α(t+s)

]

and hence

d

ds
〈M(s)M(t)〉M0 = −αM2

0 e−α(t+s) + D
[
e−α(t−s) + e−α(t+s)

]
.

When we average that last expression over the equilibrium density (thus replacing M2
0 by

D/α) we find

d

ds
〈M(s)M(t)〉ρ = De−α(t−s)

which, in comparison with (32) specifies the equilibrium temperature to be equal to T =
D/kB .

The frenetic term is obtained from LM = −αM , and thus

〈LM(s)M(t)〉M0 = −αM2
0 e−α(t+s) − D

[
e−α(t−s) − e−α(t+s)

]
.

Clearly,

δ

δhs

〈M(t)〉hM0
(h = 0) = B

2D

{
d

ds
〈M(s)M(t)〉M0 − 〈LM(s)M(t)〉M0

}

as it should.
For the issue of effective temperature we compute the ratio “frenesy versus entropy” as

Y = Y (M0; s, t) = −α〈M(s)M(t)〉M0
d
ds

〈M(s)M(t)〉M0

= −αM2
0 e−α(t+s) − D[e−α(t−s) − e−α(t+s)]

−αM2
0 e−α(t+s) + D[e−α(t−s) + e−α(t+s)] .

In that notation, the effective inverse temperature is T eff = 2T/(1 − Y ). In equilibrium
Y = −1 while Y = 1 for D = 0 and M0 �= 0.

For the limit of the “frenetic ratio”

lim
s↑+∞ lim

t↑+∞Y (M0; s, t) =
{

−1, if α > 0,

0, if α = 0

with respectively, T eff = T (paramagnetic) and T eff = 2T (critical quench), cf. [9].

Appendix B: Discrete Time

So far we have been dealing with continuous time Markov processes. Nevertheless sim-
ulations often use an updating in discrete time. It is therefore useful to give the response
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formula also for discrete time, here in analogy with the continuous time jump processes of
Sect. 2.1. Similar efforts have appeared before in [11, 36].

Consider a discrete time Markov process with configurations x, y, . . . and transition prob-
abilities p(x, y). We perturb the system as follows: the new transition probability at time i

reads

ph
i (x, y) = p(x, y)

zi(x)
e

hiβ

2 [V (y)−V (x)]

with normalization

zi(x) =
∑

y

p(x, y)e
hiβ

2 [V (y)−V (x)].

Now consider a path ω = (xi), with i = 1, . . . , n, where at time i the system jumps to config-
uration xi+1. Then the relative probability of the path in the perturbed versus the unperturbed
dynamics is

P h

P
(ω) = exp

{
β

2

n−1∑

i=1

hi[V (xi+1) − V (xi)] −
n−1∑

i=1

log z(xi)

}

.

The response function becomes

RQ,V (n,m) = ∂

∂hm

〈Q(xn)〉hμ
∣
∣
∣
∣
h=0

= β

2
〈V (xm+1)Q(xn)〉μ − β

2

〈
∑

y

p(xm, y)V (y)Q(xn)

〉

μ

, m = 1, . . . , n − 1.

Again we recognize this as the sum of an entropic term

β

2
〈[V (xm+1) − V (xm)]Q(xn)〉μ

and a frenetic term

β

2

〈
∑

y

p(xm, y)[V (y) − V (xm)]Q(xn)

〉

μ

.

In equilibrium ρ, when the process is time-reversal symmetric, that simplifies to (m < n)

R
eq
Q,V (n,m) = β

2
〈[V (xm+1) − V (xm−1)]Q(xn)〉eq .

Note that in this discrete version, the entropic and the frenetic terms do not give exactly the
same contribution to the equilibrium formula, although this discrepancy disappears in the
limit to continuous time.

Appendix C: First Order Perturbation

The usual and natural approach to response theory is that of time-dependent perturbation
theory, see for example [44]. We show here what that gives for the overdamped diffusion
processes of Sect. 2.2.
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We prepare the system at time t = 0 according to its stationary distribution ρ; the per-
turbation −hV is added for positive times. Therefore, for times t ≥ 0 the dynamics has
(backward) generator (working on observables)

Lh = L + hν∇V · ∇, L = ν(F − ∇U + ∇D) · ∇
with ν = βD. For the change in expectations at times t with respect to what we had at time
zero

〈Q(t)〉h − 〈Q(0)〉 =
∫

dxρ(x)
(
etLh − etL

)
Q(x)

we get the linear order

etLh − etL =
∫ t

0
e(t−s)L(Lh − L)esLds + O(h2).

Or, always to leading order in h ↓ 0,

1

h

[〈Q(t)〉h − 〈Q(0)〉] =
∫ t

0
dsRQV (t, s)

with response function

RQV (t, s) =
∫

dxρ(x)ν∇V (x) · ∇e(t−s)LQ(x). (33)

(We are still writing the dependence separately on time s and on time t , for greater generality
in case the perturbation is time-dependent (through hs ).) Equation (33) is not useful as such
because the derivatives do not commute with the time-evolution. Another way would be
trying the partial integration

∇ · (ρν∇V
) = ∇ρ · ν∇V + ρ∇ · ν∇V = βρ

{

LV − jρ

ρ
· ∇V

}

where we have inserted the local stationary current jρ (assuming that ρ nowhere vanishes).
As a result

RQV (t, s) = −β

∫

dxρ(x)LV (x)e(t−s)LQ(x) for L = L − u(x) · ∇ (34)

with local velocity

u(x) = jρ

ρ
(x)

function of the stationary density ρ.
We can further rewrite that using the adjoint generator L∗ with respect to ρ: for any pair

of functions f,g
∫

dxρ(x)g(x)L∗f (x) =
∫

dxρ(x)f (x)Lg(x). (35)

Its physical interpretation is that it generates the time-reversed stationary process. It is im-
portant to realize though that this adjoint generator L∗ depends on the stationary distribution
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ρ, and is therefore most often not explicitly known in nonequilibrium systems. For equilib-
rium where ρ ∝ exp(−βU),L = L∗.

We can verify that L − L∗ = 2u · ∇ so that L = L∗ + u · ∇ in (34):

RQV (t, s) = β
d

ds

∫

dxρ(x)V (x)e(t−s)LQ(x) − β

∫

dxρ(x)u(x) · ∇V (x)e(t−s)LQ(x).

(36)
For jump processes, under Sect. 2.1,

((L − L∗)V )(x) = 2
∑

y

j (x, y)

ρ(x)
[V (y) − V (x)],

j (x, y) = W(x,y)ρ(x) − W(y,x)ρ(y).

Equations (34)–(36) contain the interpretation that the equilibrium form gets “restored”
when describing the system in the Lagrangian frame moving with drift velocity u, as in [13].
Note that L = L − LA, which subtracts the antisymmetric part LA = (L − L∗)/2 from the
original generator L = LS + LA. What remains is the symmetric part L = LS , of course
defining an evolution which is now detailed balance with respect to ρ. That aspect can also
be realized path-wise: when �t(x) is the one-parameter group corresponding to the flow
with velocity u(x),

∂t�t (x) = u(�t(x))

then, yt = �−t (xt ) satisfies an equilibrium Langevin equation with potential −β−1 lnρ but
with time-dependent coefficients (in mobility). In other words, the passage to the Lagrangian
frame of local velocity removes the non-conservative forcing, as explained in [12, 13]. Still,
if we do not know ρ, the formulæ (34)–(36) contain unknown observables for statistical
averaging. Moreover, thinking of spatial processes, the probability current has little relation
with the real physical currents. For our formula (15), one has an explicit expression in terms
of known observables and ρ only enters the statistical averaging.

Let us now see how the above expressions are mathematically related to our formula (15).
For stationary nonequilibrium, taking μ = ρ, it is immediate to rewrite (15) as

RQV (t, s) = β
d

ds
〈V (s)Q(t)〉ρ − β

2

〈(
L − L∗)V (s)Q(t)

〉
ρ
. (37)

In fact,

d

ds
〈V (s)Q(t)〉ρ = − d

dt
〈V (s)Q(t)〉ρ = −〈(L∗V )(s)Q(t)〉ρ (38)

so that also

RQV (t, s) = −β

〈(
L + L∗

2
V

)

(s)Q(t)

〉

ρ

(39)

as we have also seen in (31), or in (34) because L = (L + L∗)/2.
Also for transient regimes we can rewrite the response formula (15) as what one would

get in equilibrium plus a correction term:

R
μ

QV (t, s) = β
d

ds
〈V (s)Q(t)〉μ + β〈G̃μs V (s)Q(t)〉

μ
(40)
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where now

G̃μV = 1

2μ
[−V L†μ + L†(μV ) − μLV ].

Formula (40) reduces to (37) for μ = ρ.
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